Perturbation of l-copies and measure convergence in preduals of von Neumann algebras

نویسنده

  • H. Pfitzner
چکیده

The present article deals with convergence in probability in L-spaces from a functional analytic point of view. The L-spaces in question are the preduals of von Neumann algebras with finite faithful normal traces. To consider an easy example we look at the commutative case: Let (Ω,Σ, μ) be a finite measure space, let (fn) be a bounded sequence in L (Ω,Σ, μ). If (appropriately chosen representatives of) the fn have pairwise disjoint supports then clearly (fn) converges to 0 in measure. From the functional analytic point of view such a sequence, up to normalization, is the canonical basis of an isometric copy of l. If one perturbes (fn) by a norm null sequence (gn) then (fn + gn) still μ-converges to 0 and spans l 1 almost isometrically (in a sense to be made precise below in §2). It has been known [10, Th. 2] (see also [19, Th. 3, Rem. 6bis]) for quite a time that, roughly speaking, these are essentially the only examples of μ-null sequences. Theorem 1 contains the analogous statement for the predual of a von Neumann algebra with finite faithful normal trace. (For notation and definitions see §2.) Theorem 1 Let (xn) be a bounded sequence in L 1(N , τ) = N∗ where (N , τ) is a von Neumann algebra with a finite normal faithful trace τ . Then the following assertions are equivalent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L-embedded Banach spaces and measure topology

An L-embedded Banach spaace is a Banach space which is complemented in its bidual such that the norm is additive between the two complementary parts. On such spaces we define a topology, called an abstract measure topology, which by known results coincides with the usual measure topology on preduals of finite von Neumann algebras (like L 1 ([0, 1])). Though not numerous, the known properties of...

متن کامل

Various topological forms of Von Neumann regularity in Banach algebras

We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...

متن کامل

On Unitary Representability of Topological Groups

We prove that the additive group (E∗, τk(E)) of an L∞-Banach space E, with the topology τk(E) of uniform convergence on compact subsets of E, is topologically isomorphic to a subgroup of the unitary group of some Hilbert space (is unitarily representable). This is the same as proving that the topological group (E∗, τk(E)) is uniformly homeomorphic to a subset of ` κ 2 for some κ. As an immediat...

متن کامل

Nonlinear $*$-Lie higher derivations on factor von Neumann algebras

Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.

متن کامل

On perturbed substochastic semigroups in abstract state spaces

The object of this paper is twofold: In the first part, we unify and extend the recent developments on honesty theory of perturbed substochastic semigroups (on L(μ)-spaces or noncommutative L spaces) to general state spaces; this allows us to capture for instance a honesty theory in preduals of abstract von Neumann algebras or subspaces of duals of abstract C-algebras. In the second part of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008